Chances are, it is nothing.
However, if it is something, it is a big something.
Late last month, a group of researchers published two papers reporting an extraordinary discovery: a superconductor that works at normal temperatures and pressure. Dubbed LK-99, the material consists of the mineral apatite doped with copper atoms. Like conventional superconductors, the authors say, it can conduct electricity resistance-free — but, crucially, without the need for super cool or highly pressurized conditions.
Such a material, long theorized, has been dubbed the “holy grail” of the field.
In the days since, there has been a scramble to confirm the results. Two theoretical analyses concluded that the authors’ claims were at least plausible. Dozens of other teams are trying to replicate the feat experimentally. Among practitioners of materials science and condensed-matter physics — at least those expressing themselves online — something close to giddiness has taken hold.
Caution is wise nonetheless. Neither paper has yet been peer-reviewed, while both seem to omit key facts. Some experts have called the experiment “sloppy.” Many others have voiced skepticism. Notoriously, the field has long been plagued by hype and false hopes (A study published in Nature in 2020, making claims of a similar breakthrough, was retracted last year).
And yet, and yet. The implications of such an achievement — if replicated — would be profound. Almost overnight, the scientific landscape could change. The superpower of superconductors is that electricity moves through them without losing energy to resistance — provided they are cooled to (say) minus-195°C and subjected to colossal pressure. A room-temperature version could be deployed cheaply and widely, revolutionizing fields from energy to transportation to computing.
Take the power grid. Using superconducting materials, energy loss from generating and transmitting electricity — currently an immense challenge — could be eliminated, thereby slashing costs and reducing emissions. Wind and solar power could be stored indefinitely. Battery life could be extended for laptops, phones, electric cars. More tantalizingly, nuclear fusion — that long-elusive source of carbon-free baseload energy — could start to look commercially viable as room-temperature superconductors enabled smaller and less costly reactor designs.
There is more. Levitating trains, gliding above superconducting rails, could become commonplace. Medical imaging devices could become smaller, cheaper and more precise. Practical quantum computers — with potential to accelerate everything from drug design to climate science — might become more feasible, thanks to improved accuracy and performance. In fact, almost any technology relying on electromagnetic processes could be transformed.
On the other hand, LK-99 might come to nothing. Sometimes things that seem too good to be true are just that. Such is the nature of scientific progress: trials and errors, triumphs and setbacks. It is a process that rewards risk, ambition and — every once in a while — off-the-wall optimism. In this case, it might well change the world as we know it.
The Editors are members of the Bloomberg Opinion editorial board.
In their recent op-ed “Trump Should Rein In Taiwan” in Foreign Policy magazine, Christopher Chivvis and Stephen Wertheim argued that the US should pressure President William Lai (賴清德) to “tone it down” to de-escalate tensions in the Taiwan Strait — as if Taiwan’s words are more of a threat to peace than Beijing’s actions. It is an old argument dressed up in new concern: that Washington must rein in Taipei to avoid war. However, this narrative gets it backward. Taiwan is not the problem; China is. Calls for a so-called “grand bargain” with Beijing — where the US pressures Taiwan into concessions
The term “assassin’s mace” originates from Chinese folklore, describing a concealed weapon used by a weaker hero to defeat a stronger adversary with an unexpected strike. In more general military parlance, the concept refers to an asymmetric capability that targets a critical vulnerability of an adversary. China has found its modern equivalent of the assassin’s mace with its high-altitude electromagnetic pulse (HEMP) weapons, which are nuclear warheads detonated at a high altitude, emitting intense electromagnetic radiation capable of disabling and destroying electronics. An assassin’s mace weapon possesses two essential characteristics: strategic surprise and the ability to neutralize a core dependency.
Chinese President and Chinese Communist Party (CCP) Chairman Xi Jinping (習近平) said in a politburo speech late last month that his party must protect the “bottom line” to prevent systemic threats. The tone of his address was grave, revealing deep anxieties about China’s current state of affairs. Essentially, what he worries most about is systemic threats to China’s normal development as a country. The US-China trade war has turned white hot: China’s export orders have plummeted, Chinese firms and enterprises are shutting up shop, and local debt risks are mounting daily, causing China’s economy to flag externally and hemorrhage internally. China’s
US President Donald Trump and Chinese President Xi Jinping (習近平) were born under the sign of Gemini. Geminis are known for their intelligence, creativity, adaptability and flexibility. It is unlikely, then, that the trade conflict between the US and China would escalate into a catastrophic collision. It is more probable that both sides would seek a way to de-escalate, paving the way for a Trump-Xi summit that allows the global economy some breathing room. Practically speaking, China and the US have vulnerabilities, and a prolonged trade war would be damaging for both. In the US, the electoral system means that public opinion