Ever since ChatGPT went viral last fall, companies have touted many ways artificial intelligence can make our lives easier. They have promised superhuman virtual assistants, tutors, lawyers and doctors.
What about a superhuman chemical engineer?
London-based startup Orbital Materials would like to create just that. The startup is working to apply generative AI — the method behind tools such as ChatGPT — expressly for accelerating the development of clean energy technologies. The idea is to make computer models powerful and sharp enough to identify the best formulas for products such as sustainable jet fuel or batteries free of rare-earth minerals.
Illustration: Yusha
Orbital Materials cofounder Jonathan Godwin imagines a system that is as accessible and effective as the software that engineers use today to model designs for things such as airplane wings and household furniture.
“That, historically, has just been too difficult for molecular science,” he said.
ChatGPT works because it is adept at predicting text — here is the next word or sentence that makes sense. For the same idea to work in chemistry, an AI system would need to predict how a new molecule would behave, not just in a lab, but in the real world.
Several researchers and companies have deployed AI to hunt for newer, greener materials. Symyx Technologies, a materials discovery company formed in 1990s, wound down after a sale. Newer companies have gained traction making petrochemical alternatives and programming cells.
Still, for many materials needed to decarbonize the planet, the technology is not there yet.
It can take decades for a new advanced material to move from discovery to the market. That timeline is way too slow for the businesses and nations looking to rapidly cut emissions as they race to meet net zero targets.
“That needs to happen in the next 10 years, or sooner,” said Aaike van Vugt, co-founder of material science startup VSParticle.
AI researchers think they can help. Before launching Orbital Materials, Godwin spent three years researching advanced material discovery at DeepMind, Google’s AI lab. That lab released AlphaFold, a model to predict protein structures that could speed up the search for new drugs and vaccines. That, coupled with the rapid takeoff of tools such as ChatGPT, convinced him that AI would soon be capable of conquering the material world.
“What I thought would take 10 years was happening in a matter of 18 months,” he said. “Things are getting better and better and better.”
Godwin compares his method with Orbital Materials to AI image generators like Dall-E and Stable Diffusion. Those models are created using billions of online images, so that when users type in a text prompt, a photorealistic creation appears. Orbital Materials plans to train models with loads of data on the molecular structure of materials. Type in some desired property and material — say, an alloy that can withstand very high heat — and the model spits out a proposed molecular formula.
In theory, this approach is effective because it can both imagine new molecules and measure how they would work, said Rafael Gomez-Bombarelli, an assistant professor at the Minnesota Institute of Technology (MIT), who advised Orbital Materials. (He said he is not an investor.)
Right now, many tech investors are prowling for companies that can turn a profit by improving greener material production. That is particularly the case in Europe, where regulators are forcing manufacturers to lower carbon emissions or face stiff fines. The markets for advanced materials in sectors like renewable energy, transportation and agriculture are set to grow by tens of billions of dollars in the coming years.
Researchers, such as those at the University of Toronto, have set up “self-driving labs” that pair AI systems with robots to search for new materials at unparalleled speeds. Dutch startup VSParticle makes machinery used to develop components for gas sensors and green hydrogen.
Think of it like a DNA sequencer in a genomics lab, said co-founder Van Vugt, who believes his equipment can help shorten the 20-year time horizon of advanced materials to one year, and, eventually, “a couple of months.” His company is currently raising investment capital.
Orbital Materials, which raised US$4.8 million in previously undisclosed initial funding, is planning to start with turning its AI gaze toward carbon capture. The startup is working on an algorithmic model that designs molecular sieves, or tiny pellets installed within a device that can sift carbon dioxide and other noxious chemicals from other emissions, more efficiently than current methods. (Godwin said the startup, which has several AI researchers, plans to publish peer-reviewed results on this tech soon.) Carbon capture has failed to work at scale to date, though thanks to a slew of government incentives, particularly in the US, interest in deploying the technology is rapidly ramping up.
Eventually, Godwin said Orbital Materials would like to move into areas such as fuel and batteries. He imagines mirroring the business model of synthetic biology and drug discovery companies: Develop the brainpower, then license out the software to manufacturers.
However, getting the AI right is only half the battle. Actually making advanced materials in areas such as battery and fuel production requires working with huge incumbent enterprises and messy supply chains. This can be even costlier than developing new drugs, MIT’s Gomez-Bombarelli said.
“The economics and de-risking make it just way harder,” he said.
Heather Redman, a managing partner with Flying Fish Partners, which backed Orbital Materials, said most tech investors chasing the shiny penny of generative AI have failed to look at its applications outside of chatbots. She acknowledged the risks of startups working in the energy sector, but believes the US$1 trillion potential of markets such as those for batteries and carbon capture are worth the investing risk.
“We love big hills as long as there’s a big gigantic market and opportunity at the top,” she said.
Gomez-Bombarelli is aware how big these hills can be. He helped start a similar company to Orbital Materials in 2015, called Calculario, which used AI and quantum chemistry to speed up the discovery process for a range of new materials. It did not get enough traction and had to focus on the OLED industry.
“Maybe we didn’t make our case,” he said. “Or maybe the market wasn’t ready.”
Whether it is now is an open question, but there are encouraging signs. Computing certainly has improved. Newcomers might also have an easier time selling AI because would-be customers could more easily grasp the potential.
Gomez-Bombarelli said the pitch is relatively simple: “Look at ChatGPT. We can do the same thing for chemistry.”
The return of US president-elect Donald Trump to the White House has injected a new wave of anxiety across the Taiwan Strait. For Taiwan, an island whose very survival depends on the delicate and strategic support from the US, Trump’s election victory raises a cascade of questions and fears about what lies ahead. His approach to international relations — grounded in transactional and unpredictable policies — poses unique risks to Taiwan’s stability, economic prosperity and geopolitical standing. Trump’s first term left a complicated legacy in the region. On the one hand, his administration ramped up arms sales to Taiwan and sanctioned
The US election result will significantly impact its foreign policy with global implications. As tensions escalate in the Taiwan Strait and conflicts elsewhere draw attention away from the western Pacific, Taiwan was closely monitoring the election, as many believe that whoever won would confront an increasingly assertive China, especially with speculation over a potential escalation in or around 2027. A second Donald Trump presidency naturally raises questions concerning the future of US policy toward China and Taiwan, with Trump displaying mixed signals as to his position on the cross-strait conflict. US foreign policy would also depend on Trump’s Cabinet and
The Taiwanese have proven to be resilient in the face of disasters and they have resisted continuing attempts to subordinate Taiwan to the People’s Republic of China (PRC). Nonetheless, the Taiwanese can and should do more to become even more resilient and to be better prepared for resistance should the Chinese Communist Party (CCP) try to annex Taiwan. President William Lai (賴清德) argues that the Taiwanese should determine their own fate. This position continues the Democratic Progressive Party’s (DPP) tradition of opposing the CCP’s annexation of Taiwan. Lai challenges the CCP’s narrative by stating that Taiwan is not subordinate to the
Republican candidate and former US president Donald Trump is to be the 47th president of the US after beating his Democratic rival, US Vice President Kamala Harris, in the election on Tuesday. Trump’s thumping victory — winning 295 Electoral College votes against Harris’ 226 as of press time last night, along with the Republicans winning control of the US Senate and possibly the House of Representatives — is a remarkable political comeback from his 2020 defeat to US President Joe Biden, and means Trump has a strong political mandate to implement his agenda. What does Trump’s victory mean for Taiwan, Asia, deterrence