A solution for eutrophication
Those familiar with the term eutrophication know that the problem has been around for a while. It receives media attention once in a while, when an environmental disaster happens and people are held responsible. However, news fades fast and old problems are quickly forgotten.
Eutrophication is caused by a gradual increase in the concentration of phosphorus, nitrogen and other nutrients in the biosystem, which occurs when streams wash away soils from the land. Debris, products of reproduction and dead terrestrial organisms are then deposited in these water bodies. As organic materials break down, algae and microscopic organisms feed on them, propagating and forming algal blooms on the water surface. This blocks light penetration and causes plants to produce less oxygen.
As algae die, they are decomposed by bacteria. This process not only releases odors and toxins, it also consumes large amounts of oxygen in the water. Eventually, oxygen depletion forms dead zones, areas that can no longer sustain life.
In Taiwan, 19 out of the 29 reservoirs are affected by the over-enrichment of nutrients, according to Taiwan Water Corp.
On a global scale, Taiwan’s water quality is rated “safe to drink.” It might be safe for human consumption, but this scale does not take into account the effects the eutrophication of water storage systems have on plant and animal life, and the ecosystem of surrounding areas.
Harmful algal blooms, dead zones and fish kills are some of the most damaging effects of eutrophication, but even that barely covers the issue. Algal blooms, the loss of biodiversity and the over-fertility of water bodies all pose serious threats spanning the human and natural worlds. Tainted drinking water supplies contribute to the spread of gastrointestinal and dermatological diseases such as conjunctivitis and hypoxia.
Evidently, eutrophication poses a serious threat to the aquatic ecosystem, yet current solutions are either ineffective or extremely costly.
EutroinVitro is an ongoing research project by students in the international department of Wego High School participating in the iGEM [International Genetically Engineered Machine] competition. Taking a synthetic biology approach, through modeling and lab research, our team is proposing a potential solution.
First, by overexpressing specific proteins, we hydrolyze organic phosphate into inorganic phosphate.
Next, by inhibiting the binding of a biosensor, we make sure that the cells are able to absorb maximum amounts of phosphate.
Third, by putting the cells in a filtering device, we allow the system to float over a large surface area. As excess polyphosphate is stored in bacteria, the concentration phosphates in the water body decreases, thus reducing algae overgrowth and increasing oxygen levels.
You are probably wondering what this has to do with you. What we need now is your participation. The most direct method is to manage water pollution and reduce the source of nutrient runoff. Limit the use of phosphoric detergents for your clothes. Lessen the application of fertilizers for your gardens. Support pesticide-free agriculture by buying organic produce. Tune in to the news — or to our podcast “EutroinVitro” on Spotify. Spread the word, educate your peers and always remember that even the smallest actions can amount to great changes.
Do not hesitate to reach out to us on social media to learn more about eutrophication and our plan. We would love to hear from you.
ALYSSA YANG
Taipei
As strategic tensions escalate across the vast Indo-Pacific region, Taiwan has emerged as more than a potential flashpoint. It is the fulcrum upon which the credibility of the evolving American-led strategy of integrated deterrence now rests. How the US and regional powers like Japan respond to Taiwan’s defense, and how credible the deterrent against Chinese aggression proves to be, will profoundly shape the Indo-Pacific security architecture for years to come. A successful defense of Taiwan through strengthened deterrence in the Indo-Pacific would enhance the credibility of the US-led alliance system and underpin America’s global preeminence, while a failure of integrated deterrence would
It is being said every second day: The ongoing recall campaign in Taiwan — where citizens are trying to collect enough signatures to trigger re-elections for a number of Chinese Nationalist Party (KMT) legislators — is orchestrated by the Democratic Progressive Party (DPP), or even President William Lai (賴清德) himself. The KMT makes the claim, and foreign media and analysts repeat it. However, they never show any proof — because there is not any. It is alarming how easily academics, journalists and experts toss around claims that amount to accusing a democratic government of conspiracy — without a shred of evidence. These
The Executive Yuan recently revised a page of its Web site on ethnic groups in Taiwan, replacing the term “Han” (漢族) with “the rest of the population.” The page, which was updated on March 24, describes the composition of Taiwan’s registered households as indigenous (2.5 percent), foreign origin (1.2 percent) and the rest of the population (96.2 percent). The change was picked up by a social media user and amplified by local media, sparking heated discussion over the weekend. The pan-blue and pro-China camp called it a politically motivated desinicization attempt to obscure the Han Chinese ethnicity of most Taiwanese.
On Wednesday last week, the Rossiyskaya Gazeta published an article by Chinese President Xi Jinping (習近平) asserting the People’s Republic of China’s (PRC) territorial claim over Taiwan effective 1945, predicated upon instruments such as the 1943 Cairo Declaration and the 1945 Potsdam Proclamation. The article further contended that this de jure and de facto status was subsequently reaffirmed by UN General Assembly Resolution 2758 of 1971. The Ministry of Foreign Affairs promptly issued a statement categorically repudiating these assertions. In addition to the reasons put forward by the ministry, I believe that China’s assertions are open to questions in international