Did you know that gas and diesel in EU states now contain a minimum of 2.5 percent biofuels? Thanks to the Renewable Transport Fuels Obligation, this requirement will rise to 5 percent by 2010. While motorists won’t notice any difference when filling up, this important change is expected to prevent the emission of millions of tonnes of carbon dioxide over the next few years.
But might biofuels be helping to solve one major environmental issue simply to create another? For Valerie Dupont, of Leeds University in northern England, the increasing use of biofuels means a sticky problem. For every tonne of biodiesel made from vegetable oil, 100kg of thick, viscous glycerol is produced as a byproduct. The annual 6.8 billion liters of biodiesel production in the EU yields around 680,000 tonnes of crude glycerol. Although some of the sweet-tasting liquid can be purified for pharmaceutical or food applications, the rest ends up as waste.
Dupont, who has a PhD in fuel and energy, now hopes to turn this growing lake of low-grade sludge into high-value hydrogen gas. Produced from vegetable oils and methanol, biodiesel is a renewable alternative to ordinary diesel. But what green-minded motorists don’t realize is that glycerol is creating a big problem.
“Glycerol is thick, viscous, full of oxygen and you cannot burn it easily,” Dupont says. “Nobody knows what to do with all this glycerol from biodiesel. There is no real outlet.”
Most waste glycerol is currently disposed of by incineration, a less than ideal arrangement. Burning the glycerol in a power station might seem an option but, Dupont says, poor energy conversion and inefficient combustion produces pollutants.
Glycerol — C3H5(OH)3 — is a molecule of three carbon atoms with eight hydrogen and three oxygen atoms. Unlock the hydrogen, and you’d have a rich source of fuel from renewable resources. At the moment, the world’s hydrogen mostly comes from the steam from the reforming of natural gas — methane (CH4) — which produces hydrogen and carbon monoxide.
“Since glycerol has a high hydrogen content compared to methane, we reckon that converting crude glycerol to hydrogen is a valid alternative route,” Dupont says.
Based on earlier research work, Dupont and her co-investigators are developing a viable process to release pure hydrogen and carbon dioxide (CO2) from glycerol.
The 18-month £270,000 (US$410,000) project involves mixing glycerol with steam over a catalyst at a controlled temperature and pressure. A reusable CO2 adsorbent ensures the carbon monoxide (CO) produced reacts fully with the steam, making even more hydrogen and CO2.
“Our process is a clean, renewable alternative to conventional methods. It produces something with high value from a low grade by-product,” Dupont says. “In addition, it’s a near carbon-neutral process, since the CO2 generated is not derived from the use of fossil fuels.”
The project is using a prototype chemical reactor which will quickly answer many practical questions including the effects of impurities. Dupont is also taking a green engineering approach, aiming for a high-purity hydrogen product that would be ideal for fuel cells.
“If everything goes well, we can look at scaling up and maybe even scaling down,” Dupont says. “If we had a reactor which could extract the hydrogen from glycerol it would be very interesting for distributed power generation.”
While hydrogen and fuel cells go nicely together, the gas is already heavily used for fertilizers, chemical plants and food production. However, making hydrogen using natural gas or even water electrolysis is expensive and unsustainable. Finding a new source makes sense.
“Hydrogen has been identified as a key future fuel for low carbon energy systems such as power generation in fuel cells and as a transport fuel,” Dupont says.
Graham Hutchings of Cardiff University has other possibilities in mind. He’s working on a UK government-funded research project involving Imperial College and Cambridge University to find different uses for waste glycerol.
“There is a glycerol problem, so people are looking for opportunities to do anything other than burn it. Turning it into hydrogen is a neat idea,” Hutchings says.
His project is therefore seeking “high tonnage” answers by turning glycerol into valuable monomers for plastics production, biodegradable solvents and even fragrances. There are several research threads, currently confidential, being worked on.
“We’re looking for things that have real application,” Hutchings says.
This could include biodegradable polymers for plastic bags or perhaps solvents for paints. If such uses are developed, the glycerol glut might well become a welcome bonus.
In an article published on this page on Tuesday, Kaohsiung-based journalist Julien Oeuillet wrote that “legions of people worldwide would care if a disaster occurred in South Korea or Japan, but the same people would not bat an eyelid if Taiwan disappeared.” That is quite a statement. We are constantly reading about the importance of Taiwan Semiconductor Manufacturing Co (TSMC), hailed in Taiwan as the nation’s “silicon shield” protecting it from hostile foreign forces such as the Chinese Communist Party (CCP), and so crucial to the global supply chain for semiconductors that its loss would cost the global economy US$1
Concerns that the US might abandon Taiwan are often overstated. While US President Donald Trump’s handling of Ukraine raised unease in Taiwan, it is crucial to recognize that Taiwan is not Ukraine. Under Trump, the US views Ukraine largely as a European problem, whereas the Indo-Pacific region remains its primary geopolitical focus. Taipei holds immense strategic value for Washington and is unlikely to be treated as a bargaining chip in US-China relations. Trump’s vision of “making America great again” would be directly undermined by any move to abandon Taiwan. Despite the rhetoric of “America First,” the Trump administration understands the necessity of
US President Donald Trump’s challenge to domestic American economic-political priorities, and abroad to the global balance of power, are not a threat to the security of Taiwan. Trump’s success can go far to contain the real threat — the Chinese Communist Party’s (CCP) surge to hegemony — while offering expanded defensive opportunities for Taiwan. In a stunning affirmation of the CCP policy of “forceful reunification,” an obscene euphemism for the invasion of Taiwan and the destruction of its democracy, on March 13, 2024, the People’s Liberation Army’s (PLA) used Chinese social media platforms to show the first-time linkage of three new
Sasha B. Chhabra’s column (“Michelle Yeoh should no longer be welcome,” March 26, page 8) lamented an Instagram post by renowned actress Michelle Yeoh (楊紫瓊) about her recent visit to “Taipei, China.” It is Chhabra’s opinion that, in response to parroting Beijing’s propaganda about the status of Taiwan, Yeoh should be banned from entering this nation and her films cut off from funding by government-backed agencies, as well as disqualified from competing in the Golden Horse Awards. She and other celebrities, he wrote, must be made to understand “that there are consequences for their actions if they become political pawns of