Did you know that gas and diesel in EU states now contain a minimum of 2.5 percent biofuels? Thanks to the Renewable Transport Fuels Obligation, this requirement will rise to 5 percent by 2010. While motorists won’t notice any difference when filling up, this important change is expected to prevent the emission of millions of tonnes of carbon dioxide over the next few years.
But might biofuels be helping to solve one major environmental issue simply to create another? For Valerie Dupont, of Leeds University in northern England, the increasing use of biofuels means a sticky problem. For every tonne of biodiesel made from vegetable oil, 100kg of thick, viscous glycerol is produced as a byproduct. The annual 6.8 billion liters of biodiesel production in the EU yields around 680,000 tonnes of crude glycerol. Although some of the sweet-tasting liquid can be purified for pharmaceutical or food applications, the rest ends up as waste.
Dupont, who has a PhD in fuel and energy, now hopes to turn this growing lake of low-grade sludge into high-value hydrogen gas. Produced from vegetable oils and methanol, biodiesel is a renewable alternative to ordinary diesel. But what green-minded motorists don’t realize is that glycerol is creating a big problem.
“Glycerol is thick, viscous, full of oxygen and you cannot burn it easily,” Dupont says. “Nobody knows what to do with all this glycerol from biodiesel. There is no real outlet.”
Most waste glycerol is currently disposed of by incineration, a less than ideal arrangement. Burning the glycerol in a power station might seem an option but, Dupont says, poor energy conversion and inefficient combustion produces pollutants.
Glycerol — C3H5(OH)3 — is a molecule of three carbon atoms with eight hydrogen and three oxygen atoms. Unlock the hydrogen, and you’d have a rich source of fuel from renewable resources. At the moment, the world’s hydrogen mostly comes from the steam from the reforming of natural gas — methane (CH4) — which produces hydrogen and carbon monoxide.
“Since glycerol has a high hydrogen content compared to methane, we reckon that converting crude glycerol to hydrogen is a valid alternative route,” Dupont says.
Based on earlier research work, Dupont and her co-investigators are developing a viable process to release pure hydrogen and carbon dioxide (CO2) from glycerol.
The 18-month £270,000 (US$410,000) project involves mixing glycerol with steam over a catalyst at a controlled temperature and pressure. A reusable CO2 adsorbent ensures the carbon monoxide (CO) produced reacts fully with the steam, making even more hydrogen and CO2.
“Our process is a clean, renewable alternative to conventional methods. It produces something with high value from a low grade by-product,” Dupont says. “In addition, it’s a near carbon-neutral process, since the CO2 generated is not derived from the use of fossil fuels.”
The project is using a prototype chemical reactor which will quickly answer many practical questions including the effects of impurities. Dupont is also taking a green engineering approach, aiming for a high-purity hydrogen product that would be ideal for fuel cells.
“If everything goes well, we can look at scaling up and maybe even scaling down,” Dupont says. “If we had a reactor which could extract the hydrogen from glycerol it would be very interesting for distributed power generation.”
While hydrogen and fuel cells go nicely together, the gas is already heavily used for fertilizers, chemical plants and food production. However, making hydrogen using natural gas or even water electrolysis is expensive and unsustainable. Finding a new source makes sense.
“Hydrogen has been identified as a key future fuel for low carbon energy systems such as power generation in fuel cells and as a transport fuel,” Dupont says.
Graham Hutchings of Cardiff University has other possibilities in mind. He’s working on a UK government-funded research project involving Imperial College and Cambridge University to find different uses for waste glycerol.
“There is a glycerol problem, so people are looking for opportunities to do anything other than burn it. Turning it into hydrogen is a neat idea,” Hutchings says.
His project is therefore seeking “high tonnage” answers by turning glycerol into valuable monomers for plastics production, biodegradable solvents and even fragrances. There are several research threads, currently confidential, being worked on.
“We’re looking for things that have real application,” Hutchings says.
This could include biodegradable polymers for plastic bags or perhaps solvents for paints. If such uses are developed, the glycerol glut might well become a welcome bonus.
US President Donald Trump has gotten off to a head-spinning start in his foreign policy. He has pressured Denmark to cede Greenland to the United States, threatened to take over the Panama Canal, urged Canada to become the 51st US state, unilaterally renamed the Gulf of Mexico to “the Gulf of America” and announced plans for the United States to annex and administer Gaza. He has imposed and then suspended 25 percent tariffs on Canada and Mexico for their roles in the flow of fentanyl into the United States, while at the same time increasing tariffs on China by 10
Trying to force a partnership between Taiwan Semiconductor Manufacturing Co (TSMC) and Intel Corp would be a wildly complex ordeal. Already, the reported request from the Trump administration for TSMC to take a controlling stake in Intel’s US factories is facing valid questions about feasibility from all sides. Washington would likely not support a foreign company operating Intel’s domestic factories, Reuters reported — just look at how that is going over in the steel sector. Meanwhile, many in Taiwan are concerned about the company being forced to transfer its bleeding-edge tech capabilities and give up its strategic advantage. This is especially
US President Donald Trump last week announced plans to impose reciprocal tariffs on eight countries. As Taiwan, a key hub for semiconductor manufacturing, is among them, the policy would significantly affect the country. In response, Minister of Economic Affairs J.W. Kuo (郭智輝) dispatched two officials to the US for negotiations, and Taiwan Semiconductor Manufacturing Co’s (TSMC) board of directors convened its first-ever meeting in the US. Those developments highlight how the US’ unstable trade policies are posing a growing threat to Taiwan. Can the US truly gain an advantage in chip manufacturing by reversing trade liberalization? Is it realistic to
Last week, 24 Republican representatives in the US Congress proposed a resolution calling for US President Donald Trump’s administration to abandon the US’ “one China” policy, calling it outdated, counterproductive and not reflective of reality, and to restore official diplomatic relations with Taiwan, enter bilateral free-trade agreement negotiations and support its entry into international organizations. That is an exciting and inspiring development. To help the US government and other nations further understand that Taiwan is not a part of China, that those “one China” policies are contrary to the fact that the two countries across the Taiwan Strait are independent and