Of all the charges leveled against environmentalists, perhaps the most unfair is the accusation that we are opposed to technological change. Most of the greens I know are fascinated by gadgets (sometimes to the exclusion of better solutions), while some of the people we confront seem terrified by new technologies, and react to them — witness the campaigns against windfarms — with irrational hostility.
But because environmentalists tend to have a feeling for material constraints, we recognize that solutions cannot be conjured out of thin air. In some cases they just don’t appear to exist.
There are two reasons why we make such a fuss about flying. The first is that, even as governments promise to cut emissions, everywhere airports are expanding. In the UK, the government expects the number of airline passengers to rise from 228 million in 2005 to 480 million in 2030. Before long, there will scarcely be a patch of sky without a jet in it. The other is that there are no alternative means of propelling people through the air that are not more destructive than burning ordinary aviation fuel. Or so we think.
The airline companies prescribe two cures that are even worse than the disease. Even before they are deployed commercially in jets, biofuels are spreading hunger and deforestation. At first sight, hydrogen seems more promising. If it is produced by electrolysis using renewable electricity, it’s almost carbon free. The prohibitive issue is storage. Hydrogen contains just a quarter of the energy as the same volume of jet fuel (kerosene), which means that planes could fly long distances only if they were filled with gas, rather than passengers or cargo.
This means that if hydrogen planes are to fly commercially, they need much wider bodies than ordinary jetliners. The Royal Commission on Environmental Pollution says that “the combination of larger drag and lower weight would require flight at higher altitudes” than planes fueled by kerosene.
A technology that is green at ground level becomes an environmental disaster in the stratosphere. Hydrogen’s great advantage — that it produces only water when it burns — turns into a major liability: in the stratosphere, water vapor is a powerful greenhouse gas. The commission estimates that hydrogen planes would exert a climate-changing effect “some 13 times larger than for a standard kerosene-fuelled subsonic aircraft.”
But there is another use for this gas, though I am aware that it will go down like a lead balloon with most of my readers. The word airship elicits a fixed reaction in almost everyone who hears it: “What about the Hindenburg?”
It’s as if, every time someone proposed traveling on a cruise ship, you were to ask: “But what about the Titanic?”
Yes, there was a spectacular disaster — 71 years ago. It has lodged in our minds because, like the Titanic, the Hindenburg was bigger and plusher than any craft built before it, and it was carrying rich and prominent people. The conflagration was witnessed by journalists and broadcast all over the world. It also became the technology’s funeral pyre: the Hindenburg was doomed long before it burnt, as airships were already being displaced by airplanes.
Though the designs have changed, their disadvantages have not disappeared. While a large commercial airliner cruises at about 900kph, the maximum speed of an airship is roughly 150kph. At an average speed of 130kph, the journey from London to New York would take 43 hours. Airships are more sensitive to wind than airplanes, which means that flights are more likely to be delayed. But they have one major advantage: The environmental cost could be reduced to almost zero.
Even when burning fossil fuels, the total climate-changing impact of an airship, according to researchers at the Tyndall Centre for Climate Change Research in southeast England, is 80 percent to 90 percent smaller than that of ordinary aircraft. But the airship is also the only form of transport that can easily store hydrogen: You could inflate a hydrogen bladder inside the helium balloon.
There might be a neat synergy here: one of the problems with airships is that they become lighter, and therefore harder to control, as the fuel is consumed. In this case they become heavier. Michael Stewart of the company World SkyCat suggests burning both gaseous and liquid hydrogen to keep the weight of the craft constant.
Airships fly much lower than planes, typically at about 1,300m, which means their emissions of water vapor have very little effect on temperature. If they were powered by hydrogen fuel cells, they would be almost silent, greatly reducing the effects for people on the ground. Though they are much slower than jets, the cabin can be built much wider, which means that traveling by airship would be rather like traveling by cruise ship, but at twice the speed and using a fraction of the fuel.
There are four small companies trying to get airships off the ground. Most of the new designs make use of aerodynamic lift as well as buoyancy (they are shaped like fat planes with stubby wings or tails), which means they are heavier and more stable than the old dirigibles and can land without help on the ground. They can alight on and take off from almost any flattish surface, including water. But all of them have a problem with flotation — of the financial rather than the physical kind. While the price of carbon stays low, companies have no financial incentive to switch to a different form of transport.
The only help governments are prepared to provide is development funds for military applications: raising money for killing people is always easier than raising money to save them. For a few years the Pentagon took an interest in craft that could land anywhere and carry several hundred tonnes of equipment. Otherwise, like so many other promising green technologies, this proposal is losing height in a hostile market.
All the companies promoting large commercial airships are concentrating on freight, especially in places that are poorly served by roads. The danger here is that, if they take off, they could displace not jet transport but freight shipping — in which case, if they burn diesel, they are likely to cause a net increase in carbon pollution.
Paradoxically, the other major constraint could be an environmental one. Airships are one of several green technologies that might be killed by a shortage of materials. A new generation of solar panels relies on gallium and indium, whose global supplies appear close to exhaustion. The price of platinum, which is used in catalytic converters, has tripled over the past five years. Beyond a few natural gasfields in Texas, economically viable supplies of helium are rare; even there they might be exhausted in 50 years at current rates of use, or much faster if airships take off. If there is a God, he isn’t green.
Is this proposal just a flight of fancy? Because airships feature in no official document, because they have not been considered by either government or major industry, I have no way of knowing. But like most greens I’m prepared to try almost anything, as long as it works. Can the same be said of our opponents?
It is almost three years since Chinese President Xi Jinping (習近平) and Russian President Vladimir Putin declared a friendship with “no limits” — weeks before Russia’s invasion of Ukraine in February 2022. Since then, they have retreated from such rhetorical enthusiasm. The “no limits” language was quickly dumped, probably at Beijing’s behest. When Putin visited China in May last year, he said that he and his counterpart were “as close as brothers.” Xi more coolly called the Russian president “a good friend and a good neighbor.” China has conspicuously not reciprocated Putin’s description of it as an ally. Yet the partnership
The ancient Chinese military strategist Sun Tzu (孫子) said “know yourself and know your enemy and you will win a hundred battles.” Applied in our times, Taiwanese should know themselves and know the Chinese Communist Party (CCP) so that Taiwan will win a hundred battles and hopefully, deter the CCP. Taiwanese receive information daily about the People’s Liberation Army’s (PLA) threat from the Ministry of National Defense and news sources. One area that needs better understanding is which forces would the People’s Republic of China (PRC) use to impose martial law and what would be the consequences for living under PRC
Chinese Nationalist Party (KMT) Chairman Eric Chu (朱立倫) said that he expects this year to be a year of “peace.” However, this is ironic given the actions of some KMT legislators and politicians. To push forward several amendments, they went against the principles of legislation such as substantive deliberation, and even tried to remove obstacles with violence during the third readings of the bills. Chu says that the KMT represents the public interest, accusing President William Lai (賴清德) and the Democratic Progressive Party of fighting against the opposition. After pushing through the amendments, the KMT caucus demanded that Legislative Speaker
On New Year’s Day, it is customary to reflect on what the coming year might bring and how the past has brought about the current juncture. Just as Taiwan is preparing itself for what US president-elect Donald Trump’s second term would mean for its economy, national security and the cross-strait “status quo” this year, the passing of former US president Jimmy Carter on Monday at the age of 100 brought back painful memories of his 1978 decision to stop recognizing the Republic of China as the seat of China in favor of the People’s Republic of China. It is an