The world economy is being battered by sharply higher energy prices. While a few energy-exporting countries in the Middle East and elsewhere reap huge profits, the rest of the world is suffering as the price of oil has topped US$119 per barrel and that of coal has doubled.
Without plentiful and low-cost energy, every aspect of the global economy is threatened. For example, food prices are increasing alongside soaring oil prices, partly because of increased production costs, but also because farmland in the US and elsewhere is being converted from food production to bio-fuel production.
No quick fix exists for oil prices. Higher prices reflect basic conditions of supply and demand. The world economy — especially China, India, and elsewhere in Asia — has been growing rapidly, leading to a steep increase in global demand for energy, notably for electricity and transport. Yet global supplies of oil, natural gas, and coal cannot easily keep up, even with new discoveries. And, in many places, oil supplies are declining as old oil fields are depleted.
Coal is in somewhat larger supply, and can be turned into liquid fuels for transport. Yet coal is an inadequate substitute, partly because of limited supplies, and partly because coal emits large amounts of carbon dioxide per unit of energy, and therefore is a dangerous source of man-made climate change.
For developing countries to continue to enjoy rapid economic growth, and for rich countries to avoid a slump caused, it will be necessary to develop new energy technologies. Three objectives should be targeted: low-cost alternatives to fossil fuels, greater energy efficiency and reduction of carbon dioxide emissions.
The most promising technology in the long term is solar power. The total solar radiation hitting the planet is about 1,000 times the world’s commercial energy use. This means that even a small part of the earth’s land surface, notably in desert regions, which receive massive solar radiation, can supply large amounts of the electricity for much of the rest of the world.
For example, solar power plants in the Mohave Desert in the US could supply more than half of the country’s electricity needs. Solar power plants in Northern Africa could supply power to Western Europe. Solar power plants in the Sahel of Africa, just south of the vast Sahara, could supply power to much of west,east and central Africa.
Perhaps the single most promising development in terms of energy efficiency is “plug-in hybrid technology” for automobiles, which may be able to triple the fuel efficiency of new automobiles within the next decade. The idea is that automobiles would run mainly on batteries recharged each night on the electricity grid, with a gasoline-hybrid engine as a backup to the battery. General Motors might have an early version by 2010.
The most important technology for the safe environmental use of coal is the capture and geological storage of carbon dioxide from coal-fired power plants. Such “carbon capture and sequestration” (CCS) is urgently needed in the major coal-consuming countries, especially China, India, Australia and the US. The key CCS technologies have already been developed; it is time to move from engineering blueprints to real demonstration power plants.
For all of these promising technologies, governments should be investing in the science and high costs of early-stage testing. Without at least partial public financing, the uptake of these new technologies will be slow and uneven. Indeed, most major technologies that we now take for granted — airplanes, computers, the Internet, and new medicines, to name but a few — received crucial public financing in the early stages of development and deployment.
It is shocking, and worrisome, that public financing remains slight, because these technologies’ success could translate into literally trillions of dollars of economic output. For example, according to the most recent data from the International Energy Agency, in 2006 the US government invested a meager US$3 billion per year in energy research and development. In inflation-adjusted dollars, this represented a decline of roughly 40 percent since the early 1980s, and now equals what the US spends on its military in just 1.5 days.
The situation is even more discouraging when we look at the detail. US government funding for renewable energy technologies (solar, wind, geothermal, ocean and bio-energy) totaled a meager US$239 million, or just three hours of defense spending. Spending on carbon capture and sequestration was just US$67 million, while for energy efficiency of all types (buildings, transport and industry) it was US$352 million.
Of course, developing new energy technologies is not the US’ responsibility alone. Global cooperation on energy technologies is needed both to increase supplies and to ensure that energy use is environmentally safe, especially to head off man-made climate change from the use of fossil fuels. This would not only be good economics, but also good politics, since it could unite the world in our common interest, rather than dividing the world in a bitter struggle over diminishing oil, gas and coal reserves.
Jeffrey Sachs is professor of economics and director of the Earth Institute at Columbia University.
COPYRIGHT: PROJECT SYNDICATE
For three years and three months, Taiwan’s bid to join the Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP) has remained stalled. On Nov. 29, members meeting in Vancouver agreed to establish a working group for Costa Rica’s entry — the fifth applicant in line — but not for Taiwan. As Taiwan’s prospects for CPTPP membership fade due to “politically sensitive issues,” what strategy should it adopt to overcome this politically motivated economic exclusion? The situation is not entirely dim; these challenges offer an opportunity to reimagine the export-driven country’s international trade strategy. Following the US’ withdrawal from the Trans-Pacific Partnership
Two major Chinese Communist Party (CCP)-People’s Liberation Army (PLA) power demonstrations in November 2024 highlight the urgency for Taiwan to pursue a military buildup and deterrence agenda that can take back control of its destiny. First, the CCP-PLA’s planned future for Taiwan of war, bloody suppression, and use as a base for regional aggression was foreshadowed by the 9th and largest PLA-Russia Joint Bomber Exercise of Nov. 29 and 30. It was double that of previous bomber exercises, with both days featuring combined combat strike groups of PLA Air Force and Russian bombers escorted by PLAAF and Russian fighters, airborne early warning
Since the end of former president Ma Ying-jeou’s (馬英九) administration, the Ma Ying-jeou Foundation has taken Taiwanese students to visit China and invited Chinese students to Taiwan. Ma calls those activities “cross-strait exchanges,” yet the trips completely avoid topics prohibited by the Chinese Communist Party (CCP), such as democracy, freedom and human rights — all of which are universal values. During the foundation’s most recent Chinese student tour group, a Fudan University student used terms such as “China, Taipei” and “the motherland” when discussing Taiwan’s recent baseball victory. The group’s visit to Zhongshan Girls’ High School also received prominent coverage in
India and China have taken a significant step toward disengagement of their military troops after reaching an agreement on the long-standing disputes in the Galwan Valley. For government officials and policy experts, this move is welcome, signaling the potential resolution of the enduring border issues between the two countries. However, it is crucial to consider the potential impact of this disengagement on India’s relationship with Taiwan. Over the past few years, there have been important developments in India-Taiwan relations, including exchanges between heads of state soon after Indian Prime Minister Narendra Modi’s third electoral victory. This raises the pressing question: