Most religions embrace and promote certain notions about the meaning of life, offering the faithful reasons why we and all other organisms exist. Indeed, perhaps the fundamental definition of religious faith is the belief that life serves a (divine) purpose. Science, however, has always given a resounding "no" to the question "Does life have a higher meaning?"
At least until now.
In a series of lectures and in a forthcoming book, science writers Eric Schneider and Dorion Sagan argue that even from a scientific perspective, life does serve a purpose, and thus does have a meaning that transcends the self. They arrived at this conclusion when trying to reconcile a contradiction that has long puzzled those who study both biology and physics.
Living organisms obviously embody arrangements of matter into complex structures. They transform chemicals and, in an orderly fashion, transport and store them in purposeful ways. Above the level of individual organisms, they form societies and ecosystems. All of us are familiar with these fundamental biological notions, and we are all part of these processes. Order seems to be the name of the biological game, and evolution leads to more complex organisms and more organized structures.
This is, of course, at odds with one of the fundamental principles of physics: the second law of thermodynamics, which holds that entropy -- the degradation of all matter and energy in the universe to an ultimate state of inert uniformity -- increases as a result of each and every process. The more the world develops the more disorder there will be. Physics even accepts the idea that entropy defines the direction of time. In the end everything will be broken down and randomly distributed.
How do Schneider and Sagan reconcile the contradiction between what appears true of life -- that it organizes matter into increasingly complex creatures and structures -- and the notion that disorder should increase and order should be lost? Equally important, how can science see any meaning of life in the reconciliation of that apparent contradiction?
The bottom line is that the second law of thermodynamics rules and that the existence of life helps increase entropy. In other words, life promotes disorder. Some might think that this could be true only if the logical end of evolution and intelligent life were to be a nuclear explosion that pulverized Earth. But that is not what Schneider and Sagan mean. Instead, they make a distinction between matter and energy and say that matter organized in structures disseminates energy gradients faster than randomly distributed matter.
As one example, they consider a phenomenon of which beer drinkers have long been aware. If you want to empty a bottle of water (or beer) and turn it upside down, the water will come out in uneven glugs. If you spin the bottle and create an eddy inside it, the water will flow out much faster and more smoothly. The eddy in the bottle is a structure in the water. Water running down is matter losing its potential energy. The structure speeds up the dissemination of the energy gradient.
Similarly, on a hot day, the air in a forest is cooler than over adjacent bare lands, thanks to evaporation and transpiration in the trees. The energy gradient, in this case that of heat, is disseminated more effectively by the structure of the forest and the life within it.
The more complex the structure the more effective is the energy dissemination. Populations are better in this respect than single individuals; ecosystems even more so, and most effective of all -- so far -- are human high-tech societies.
Thus, goes the argument, the second law of thermodynamics is not contrary to the existence of life; rather, it is the cause of life. That law drives evolution to higher levels of complexity and to more sophisticated societies and technologies for the sole purpose of disseminating energy gradients.
So life, at long last, has a higher meaning in the eyes of science -- even if serving the second law of thermodynamics is not exactly what the religiously faithful had in mind.
Arne Jernelov is professor of environmental biochemistry, an honorary scholar and former director of the International Institute of Applied Systems Analysis in Vienna and a UN expert on environmental catastrophes.
Copyright: Project Syndicate
Trying to force a partnership between Taiwan Semiconductor Manufacturing Co (TSMC) and Intel Corp would be a wildly complex ordeal. Already, the reported request from the Trump administration for TSMC to take a controlling stake in Intel’s US factories is facing valid questions about feasibility from all sides. Washington would likely not support a foreign company operating Intel’s domestic factories, Reuters reported — just look at how that is going over in the steel sector. Meanwhile, many in Taiwan are concerned about the company being forced to transfer its bleeding-edge tech capabilities and give up its strategic advantage. This is especially
US President Donald Trump last week announced plans to impose reciprocal tariffs on eight countries. As Taiwan, a key hub for semiconductor manufacturing, is among them, the policy would significantly affect the country. In response, Minister of Economic Affairs J.W. Kuo (郭智輝) dispatched two officials to the US for negotiations, and Taiwan Semiconductor Manufacturing Co’s (TSMC) board of directors convened its first-ever meeting in the US. Those developments highlight how the US’ unstable trade policies are posing a growing threat to Taiwan. Can the US truly gain an advantage in chip manufacturing by reversing trade liberalization? Is it realistic to
The US Department of State has removed the phrase “we do not support Taiwan independence” in its updated Taiwan-US relations fact sheet, which instead iterates that “we expect cross-strait differences to be resolved by peaceful means, free from coercion, in a manner acceptable to the people on both sides of the Strait.” This shows a tougher stance rejecting China’s false claims of sovereignty over Taiwan. Since switching formal diplomatic recognition from the Republic of China to the People’s Republic of China in 1979, the US government has continually indicated that it “does not support Taiwan independence.” The phrase was removed in 2022
US President Donald Trump, US Secretary of State Marco Rubio and US Secretary of Defense Pete Hegseth have each given their thoughts on Russia’s war with Ukraine. There are a few proponents of US skepticism in Taiwan taking advantage of developments to write articles claiming that the US would arbitrarily abandon Ukraine. The reality is that when one understands Trump’s negotiating habits, one sees that he brings up all variables of a situation prior to discussion, using broad negotiations to take charge. As for his ultimate goals and the aces up his sleeve, he wants to keep things vague for