Today marks the 100th anniversary of when the first Nobel Prizes were awarded. Ever since, they have been a subject of great interest and debate.
Alfred Nobel died on Dec. 10 1896. When his will was opened it was found that he had donated his considerable wealth to creating the prizes that bear his name. Five prizes were mentioned: physics, chemistry, physiology or medicine, literature and peace; and four prize-awarding institutions named: the Royal Swedish Academy of Sciences (for physics and chemistry), the Karolinska Institutet (for physiology or medicine), the Swedish Academy (for literature) and a group appointed by the Norwegian Parliament, later called "The Norwegian Nobel Committee" (for peace). Sweden and Norway were then tied together in a union.
Since the creation of the Nobel prizes, more than 650 medals and diplomas have been given away in the original prize areas. A prize in economic sciences in memory of Alfred Nobel was established by the Bank of Sweden in 1968. Most of these prizes are connected with scientific breakthroughs, literary masterpieces and attempts to make peace in a violent century.
ILLUSTRATION: YUSHA
The thread running though all the stories of the prize winners is the concept of creativity: both individual creativity and creative environments. One story -- that of a Nobel laureate in physics, Albert Einstein -- is particularly explicative of the process. Perhaps the most common question about the Nobel Prize in physics is: "Why didn't Einstein get the prize for his theory of relativity?"
At the age of 26, during his annus mirabulis of 1905, Einstein published three papers that were to influence the entire 20th century, not only in physics. One of these papers concerned the special theory of relativity, which describes how space and time, or mass and energy, are mixed at high speeds. One paper describes the "Brownian motion," the irregular motion performed by small particles in a liquid as a result of their collisions with the liquid molecules. The third paper, finally, explains the photo-electric effect, why light can make electricity leave metal surfaces, something we apply in ordinary photocells.
Of the three theories, the theory of relativity became the most written about and discussed. When the Royal Swedish Academy of Sciences year after year asked scientists for their nominations, many answered that Einstein deserved the Nobel Prize in physics for his special theory of relativity. But the Nobel Committee for Physics didn't agree, and for years no prize was awarded to Einstein.
At first the Nobel Committee argued that the theory might be wrong and wrote that it would be best to wait for experimental evidence that confirmed Einstein's theory. When Einstein managed to generalize his theory and introduced the curved space-time, in which light bends around heavy astronomical bodies, the number of nominations increased even more.
But the Nobel Committee for Physics had a powerful member, Allvar Gullstrand, professor at Uppsala University and winner of the Nobel Prize in physiology or medicine in 1911 for his work on how light bends in the eye. In his opinion, Einstein was wrong, and he tried to prove it by making his own calculations. Today, we know that Gullstrand was wrong, but his opposition was enough to block the prize-awarding process.
In Uppsala, however, another professor, Carl Wilhelm Oseen, a specialist on mathematical physics, understood Einstein's theories and had also understood the power balance in the Nobel Committee for Physics. As a newly elected member of the academy, in 1921 he was the first to propose giving Einstein a Nobel Prize for his work on the photoelectric effect. This single nomination made the wheels begin to turn in Einstein's favor.
Oseen was made a member of the Nobel Committee and wrote a positive report on the theory of the photoelectric effect. The very next year, Albert Einstein was awarded the 1921 Nobel Prize in physics "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect."
So was the Royal Academy of Sciences mistaken in not giving its award of a Nobel Prize to Einstein for what most people would consider his most important intellectual discovery? Many have argued that this is the case. But one has to study a little bit more history of physics before making the final judgment.
In this history it is clear that Einstein's paper from 1905 not only explained the photoelectric effect, but also initiated something of a greater magnitude, something revolutionary: it introduced the concept of the photon, the wave-particle which not only lies at the heart of our understanding of both the micro and macro-cosmos, but which led to technical applications such as medical laser scalpels and the laser diodes of the Internet.
With regard to the text of Alfred Nobel's will, which requires that a Nobel laureate confer the greatest benefit on mankind, Einstein's introduction of the photon by far surpasses the theory of relativity.
Today the work of the five Nobel committees goes on, mainly along the same lines as at the beginning of last century. The big difference is the number of nominations, which today tend to run in the several hundreds. If a new Albert Einstein is hidden somewhere among the hundreds of candidates, only the future will tell.
Anders Barany is professor of physics at Stockholm University and senior curator at the Nobel Museum. He has acted as scientific secretary to the Nobel Committee for Physics since 1990.
copyright: project syndicate
The US Senate’s passage of the 2026 National Defense Authorization Act (NDAA), which urges Taiwan’s inclusion in the Rim of the Pacific (RIMPAC) exercise and allocates US$1 billion in military aid, marks yet another milestone in Washington’s growing support for Taipei. On paper, it reflects the steadiness of US commitment, but beneath this show of solidarity lies contradiction. While the US Congress builds a stable, bipartisan architecture of deterrence, US President Donald Trump repeatedly undercuts it through erratic decisions and transactional diplomacy. This dissonance not only weakens the US’ credibility abroad — it also fractures public trust within Taiwan. For decades,
In 1976, the Gang of Four was ousted. The Gang of Four was a leftist political group comprising Chinese Communist Party (CCP) members: Jiang Qing (江青), its leading figure and Mao Zedong’s (毛澤東) last wife; Zhang Chunqiao (張春橋); Yao Wenyuan (姚文元); and Wang Hongwen (王洪文). The four wielded supreme power during the Cultural Revolution (1966-1976), but when Mao died, they were overthrown and charged with crimes against China in what was in essence a political coup of the right against the left. The same type of thing might be happening again as the CCP has expelled nine top generals. Rather than a
Former Chinese Nationalist Party (KMT) lawmaker Cheng Li-wun (鄭麗文) on Saturday won the party’s chairperson election with 65,122 votes, or 50.15 percent of the votes, becoming the second woman in the seat and the first to have switched allegiance from the Democratic Progressive Party (DPP) to the KMT. Cheng, running for the top KMT position for the first time, had been termed a “dark horse,” while the biggest contender was former Taipei mayor Hau Lung-bin (郝龍斌), considered by many to represent the party’s establishment elite. Hau also has substantial experience in government and in the KMT. Cheng joined the Wild Lily Student
Taipei stands as one of the safest capital cities the world. Taiwan has exceptionally low crime rates — lower than many European nations — and is one of Asia’s leading democracies, respected for its rule of law and commitment to human rights. It is among the few Asian countries to have given legal effect to the International Covenant on Civil and Political Rights and the International Covenant of Social Economic and Cultural Rights. Yet Taiwan continues to uphold the death penalty. This year, the government has taken a number of regressive steps: Executions have resumed, proposals for harsher prison sentences